AmpC EXTENDED SPECTRUM

BETA-LACTAMASES (ESBL) AND INFECTION CONTROL
Overview

- Classifications of β-lactamases
- What is an ESBL?
- Spread and prevalence of ESBL
- Impact of ESBL production on outcome
- Detection of ESBL
- AmpC description and prevalence
Classification of β-lactamases

- **β-lactamases**
 - Serine enzymes
 - Class A enzymes
 - (Plasmid)
 - Class C enzymes
 - (Chromosomal)
 - Class D enzymes
 - (Plasmid)
 - Metallo-enzymes
 - Class B enzymes
 - (Chromosomal)

- ESBL
 - Pen-Cephs-Inh-S
- AmpC
 - Cephs-Inh-R
- OXA
 - Pens, esp Oxa Inhib-R/S
- MbL (IMP/VIM)
 - Carbapenems Inh-R

References:
Broad Spectrum β-lactamases:

<table>
<thead>
<tr>
<th>β-Lactamase</th>
<th>Examples</th>
<th>Substrates</th>
<th>Inhibition by Clavulanic Acid*</th>
<th>Molecular Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad-spectrum</td>
<td>TEM-1, TEM-2, SHV-1</td>
<td>Benzylpenicillin (penicillin G), amoxicillin and ampicillin, carboxypenicillins (carbenicillin and ticarcillin), ureidopenicillin (piperacillin), narrow-spectrum cephalosporins (cefazolin, cephalothin, cefamandole, cefuroxime, and others)</td>
<td>+++</td>
<td>A</td>
</tr>
<tr>
<td>OXA family</td>
<td>Substrates of the broad-spectrum group plus cloxacillin, methicillin, and oxacillin</td>
<td>+</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

- E. coli (90%), H. influenzae N. gonorrhoeae and K. pneumoniae
- Treatment:
 - Third generation cephalosporins,
 - β-lactamases inhibitors
Extended Broad Spectrum β-lactamases:

<table>
<thead>
<tr>
<th>β-Lactamase</th>
<th>Examples</th>
<th>Substrates</th>
<th>Inhibition by Clavulanic Acid*</th>
<th>Molecular Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanded-spectrum</td>
<td>TEM family and SHV family</td>
<td>Substrates of the broad-spectrum group plus oxyimino-cephalosporins (cefotaxime, cefpodoxime, ceftazidime, and ceftriaxone) and monobactam (aztreonam)</td>
<td>++++</td>
<td>A</td>
</tr>
<tr>
<td>Others (BES-1, GES/IBC family, PER-1, PER-2, SFO-1, TLA-1, VEB-1, and VEB-2)</td>
<td>Same as for TEM family and SHV family</td>
<td></td>
<td>++++</td>
<td>A</td>
</tr>
<tr>
<td>CTX-M family</td>
<td>Substrates of the expanded-spectrum group plus, for some enzymes, cefepime</td>
<td></td>
<td>++++</td>
<td>A</td>
</tr>
<tr>
<td>OXA family</td>
<td>Same as for CTX-M family</td>
<td></td>
<td>+</td>
<td>D</td>
</tr>
</tbody>
</table>
Extended-Spectrum β-Lactamases

- β-lactamases capable of conferring bacterial resistance to
 - Penicillins
 - First-, second-, and third-generation cephalosporins
 - Aztreonam
- **Do not appreciably hydrolyse cephamycins (cefoxitin or cefotetan)** or carbapenems
- Inhibited by β-lactamase inhibitor: clavulanic acid
Extended-spectrum β-lactamases (ESBL)

- Derived from Class A β-lactamases (exceptions are Class D, OXA): TEM, SHV, CTX-M, OXA, VEB, PER,...

- Therapeutic options:
 - Carbapenems
 - Tigecycline
Extended-Spectrum β-Lactamase-Producing Gram-Negative Bacilli

More Likely:
- Klebsiella sp
- E. coli
- Proteus mirabilis

Less Common:
- Enterobacter sp
- P. aeruginosa
- Citrobacter freundii
- Morganella morganii
- Serratia marcescens
Increase in numbers of Group 1, 2 and 3 β-lactamases from 1970 to 2009

- Group 1/class C cephalosporinases
- Group 2/class A and class D β-lactamases
- Group 3/class B metallo-β-lactamases
Rise in the proportions of *E. coli* from bacteraemias in England, Wales and Northern Ireland resistant to fluoroquinolones (white), oxyimino-cephalosporins (grey) and both (black)

The ESBL-producing E. coli ‘Epidemic’

Prevalence of extended spectrum β-lactamases (ESBLs) in Enterobacteriaceae

2. Edelstein et al. ICAAC, Washington, USA 2004 Poster: C2-1331

MYSTIC data on file, October 2007

Middle East Critical Care Assembly
Impact of ESBLs

Increased healthcare costs

Longer hospital stays

Higher mortality rates

Emerging in the community

ESBLs

Outcomes of ESBL production in multivariate analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>OR (95% CI) or ME</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>3.6 (1.4–9.5)</td>
<td>0.008</td>
</tr>
<tr>
<td>Length of stay</td>
<td>1.56</td>
<td>0.001</td>
</tr>
<tr>
<td>Delay in appropriate therapy</td>
<td>25.1 (10.5–60.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cost of hospitalisation</td>
<td>1.57</td>
<td>0.003</td>
</tr>
</tbody>
</table>

CI, confidence interval; ME, multiplicative effect

Predictors of mortality in patients with BSI caused by ESBL-producing Enterobacteriaceae: Effect of initial antibiotic therapy on mortality

n=186
Seemingly adequate initial therapy
21-day mortality rates

- Aminoglycosides (n=20)
 - Non-survivors: 27.8%
 - Survivors: 14%
 - p=0.40

- β-lactam/β-lactamase inhibitors (n=33)
 - Non-survivors: 22.2%
 - Survivors: 36.7%
 - p=0.24

- Carbapenems (n=28)
 - Non-survivors: 5.5%
 - Survivors: 34.2%
 - p=0.01

- Ciprofloxacin (n=16)
 - Non-survivors: 44.4%
 - Survivors: 10.1%
 - p<0.001

n=97
Routes of infection

- ESBL producers act like VRE
- Faecal colonization
- Skin colonization
- Transient contamination of the hands of staff

Coulter et al: 13% of “ambushed” ICU nurses had positive hand cultures
Detection

- Difficult
- Susceptible at standard inoculum
- Screen for ESBL in *Klebsiella pneumoniae* & *E. coli* that demonstrate reduced susceptibility to ceftazidime, cefotaxime or aztreonam

Photo courtesy of Dr D Lyon
Dept of Microbiology, Prince of Wales Hospital
Double Disc Tests
Figure 1. Detection of ESBL carriage with an E-test ESBL strips. Ceftazidime MIC against *E. coli* isolate in A is > 32µg/mL in the absence of clavulanate and 0.125µg/mL in the presence of clavulanate. Ceftazidime MIC against *K. pneumoniae* isolate in B is > 32 µg/mL in the absence of clavulanate and 0.125µg/mL in the presence of clavulanate. Observe the phantom zone production in B. As the ratio of ceftazidime with and without clavulanate is ≥8, the isolates were phenotypically determined as ESBL producers.
<table>
<thead>
<tr>
<th>Agent</th>
<th>CLSI 2009</th>
<th>CLSI 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>≤8</td>
<td>16</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>≤8</td>
<td>16-32</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>≤8</td>
<td>16-32</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>≤8</td>
<td>16</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>≤8</td>
<td>16</td>
</tr>
<tr>
<td>Cefipime</td>
<td>≤8</td>
<td>16</td>
</tr>
</tbody>
</table>

CLSI: Clinical And Laboratory Standards Institute
AmpC β-lactamases:

<table>
<thead>
<tr>
<th>β-Lactamase</th>
<th>Examples</th>
<th>Substrates</th>
<th>Inhibition by Clavulanic Acid*</th>
<th>Molecular Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmpC</td>
<td>ACC-1, ACT-1, CFE-1, CMY family, DHA-1, DHA-2, FOX family, LAT family, MIR-1, MOX-1, and MOX-2</td>
<td>Substrates of expanded-spectrum group plus cephemycins (cefotetan, cefoxitin, and others)</td>
<td>0</td>
<td>C</td>
</tr>
</tbody>
</table>
AmpC β-Lactamases

- Chromosomal AmpC β-lactamases
 - Several Enterobacteriaceae, including *Enterobacter*, *Citrobacter*, and *Serratia* contain an inducible, chromosomal gene coding for a β-lactamase
 - Resistant to penicillins, cephalosporins (weakly to cefepime) and monobactams; not inhibited by clavulanate; Class C β-lactamases

- Plasmid-mediated AmpC β-lactamases
 - Arose through transfer of AmpC chromosomal genes into plasmids
 - Highly prevalent in the naturally AmpC-deficient *K. pneumoniae*
 - Emergence predominantly in community-acquired infections (*Salmonella* spp., *E. coli*)
 - Co-resistance to aminoglycosides, SXT, quinolones

- Therapeutic options:
 - 4th generation cephalosporins (but resistance may occur with minor AA changes)
 - Carbapenems
Prevalence of AmpC-producing Enterobacter spp. over time in Europe and USA

- **AmpC (%)**
 - Europe
 - USA

Population-based Laboratory Surveillance for AmpC β-Lactamase–producing Escherichia coli, Calgary

Johann D.D. Pitout,* Daniel B. Gregson,* Deirdre L. Church,* and Kevin B. Laupland*
*University of Calgary, Calgary, Alberta, Canada
Vol. 13, No. 3 • March 2007
Traditional view of “who gets ESBL producers”

- Hospitalised patients or Nursing home patients
 - ICU
 - Previous use of antibiotics
 - Long length of stay
 - Lots of procedures and tubes
 - Higher APACHE score
Community-acquired ESBL producers

- First became a problem in Canada, Spain and the United Kingdom

- While many “community-acquired” cases were actually from residential care homes or recently hospitalised patients, some were truly from the community
Importance of community-acquired ESBL producers

• All of the first line options for community-acquired UTI are lost
 – Trimethoprim
 – Trimethoprim/sulfamethoxazole
 – Gentamicin
 – Ceftriaxone
 – Ticarcillin/clavulanate
 – Piperacillin/tazobactam
 – Ciprofloxacin
ESBL types

- Hospital ESBLs are of TEM or SHV type

- Community ESBLs are of CTX-M type
 - Very closely related to chromosomal beta-lactamases of *Kluyvera* spp.
 - Most commonly occur in *E. coli*
Another implication of ESBL producers

- More carbapenem use

- This translates to more carbapenem resistant organisms
 - KPC producers
 - CRAB
 - Carbapenem resistant *Pseudomonas*
β-lactamases: Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>Broad Spectrum</th>
<th>Expanded Spectrum</th>
<th>AmpC</th>
<th>Carbapenemase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEM/SHV</td>
<td>TEM/SHV</td>
<td>KPC</td>
<td>MBL</td>
</tr>
<tr>
<td>Inhibition by Clavulanic Acid</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Penicillins</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Oxacilin</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Narrow Spectrum Cephalosporins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephamycins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyiminocephalosporins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monobactam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxin E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Green** indicates no inhibition.
- **Yellow** indicates partial inhibition.
- **Red** indicates full inhibition.

Classes:
- **A**:
 - Narrow Spectrum Cephalosporins
 - Cephamycins
 - Oxyiminocephalosporins
 - Cefepime
 - Monobactam
 - Carbapenems
 - Polymyxin E

Inhibition by Clavulanic Acid:
- TEM/SHV: A
- OXA: D

Expanded Spectrum:
- TEM/SHV: A
- CTX-M: A
- OXA: D

AmpC:
- KPC: C
- MBL: A
- OXA: B

Carbapenemase:
- KPC: A
- MBL: B
- OXA: D
Take home

• ESBL are common
• ESBL is widely spread
• Hospital and community
• Impact on outcome
• Detection in lab is based on decreased susceptibility to cephalosporin
• Limited treatment options: Carbapenems or Tigecycline